表引擎
表引擎(即表的类型)决定了:
1)数据的存储方式和位置,写到哪里以及从哪里读取数据
2)支持哪些查询以及如何支持。
3)并发数据访问。
4)索引的使用(如果存在)。
5)是否可以执行多线程请求。
6)数据复制参数。
ClickHouse的表引擎有很多,下面介绍其中几种,对其他引擎有兴趣的可以去查阅官方文档:https://clickhouse.yandex/docs/zh/operations/table_engines/
1 TinyLog
最简单的表引擎,用于将数据存储在磁盘上。每列都存储在单独的压缩文件中,写入时,数据将附加到文件末尾。
该引擎没有并发控制
- 如果同时从表中读取和写入数据,则读取操作将抛出异常;
- 如果同时写入多个查询中的表,则数据将被破坏。
这种表引擎的典型用法是 write-once:首先只写入一次数据,然后根据需要多次读取。此引擎适用于相对较小的表(建议最多1,000,000行)。如果有许多小表,则使用此表引擎是适合的,因为它比需要打开的文件更少。当拥有大量小表时,可能会导致性能低下。 不支持索引。
案例:创建一个TinyLog引擎的表并插入一条数据
:)create table t (a UInt16, b String) ENGINE=TinyLog;
:)insert into t (a, b) values (1, 'abc');
此时我们到保存数据的目录/var/lib/clickhouse/data/default/t中可以看到如下目录结构:
[root@hadoop102 t]# ls
a.bin b.bin sizes.json
a.bin 和 b.bin 是压缩过的对应的列的数据,sizes.json 中记录了每个 *.bin 文件的大小:
[root@hadoop102 t]# cat sizes.json
{"yandex":{"a%2Ebin":{"size":"28"},"b%2Ebin":{"size":"30"}}}
2 Memory
内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失。读写操作不会相互阻塞,不支持索引。简单查询下有非常非常高的性能表现(超过10G/s)。
一般用到它的地方不多,除了用来测试,就是在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景。
3 Merge
Merge 引擎 (不要跟 MergeTree 引擎混淆) 本身不存储数据,但可用于同时从任意多个其他的表中读取数据。 读是自动并行的,不支持写入。读取时,那些被真正读取到数据的表的索引(如果有的话)会被使用。
Merge 引擎的参数:一个数据库名和一个用于匹配表名的正则表达式。
案例:先建t1,t2,t3三个表,然后用 Merge 引擎的 t 表再把它们链接起来。
:)create table t1 (id UInt16, name String) ENGINE=TinyLog;
:)create table t2 (id UInt16, name String) ENGINE=TinyLog;
:)create table t3 (id UInt16, name String) ENGINE=TinyLog;
:)insert into t1(id, name) values (1, 'first');
:)insert into t2(id, name) values (2, 'second');
:)insert into t3(id, name) values (3, 'i am in t3');
:)create table t (id UInt16, name String) ENGINE=Merge(currentDatabase(), '^t');
:) select * from t;
┌─id─┬─name─┐
│ 2 │ second │
└────┴──────┘
┌─id─┬─name──┐
│ 1 │ first │
└────┴───────┘
┌─id─┬─name───────┐
│ 3 │ i am in t3 │
└────┴────────────┘
4 MergeTree
Clickhouse 中最强大的表引擎当属 MergeTree (合并树)引擎及该系列(*MergeTree)中的其他引擎。
MergeTree 引擎系列的基本理念如下。当你有巨量数据要插入到表中,你要高效地一批批写入数据片段,并希望这些数据片段在后台按照一定规则合并。相比在插入时不断修改(重写)数据进存储,这种策略会高效很多。
ENGINE [=] MergeTree(date-column [, sampling_expression], (primary, key), index_granularity)
参数解读:
date-column — 类型为 Date 的列名。ClickHouse 会自动依据这个列按月创建分区。分区名格式为 "YYYYMM" 。
sampling_expression — 采样表达式。
(primary, key) — 主键。类型为Tuple()
index_granularity — 索引粒度。即索引中相邻”标记”间的数据行数。设为 8192 可以适用大部分场景。
create table mt_table (date Date, id UInt8, name String) ENGINE=MergeTree(date, (id, name), 8192);
insert into mt_table values ('2019-05-01', 1, 'zhangsan');
insert into mt_table values ('2019-06-01', 2, 'lisi');
insert into mt_table values ('2019-05-03', 3, 'wangwu');
在/var/lib/clickhouse/data/default/mt_tree下可以看到:
[root@hadoop102 mt_table]# ls
20190501_20190501_2_2_0 20190503_20190503_6_6_0 20190601_20190601_4_4_0 detached
随便进入一个目录:
[root@hadoop102 20190601_20190601_4_4_0]# ls
checksums.txt columns.txt date.bin date.mrk id.bin id.mrk name.bin name.mrk primary.idx
- *.bin是按列保存数据的文件
- *.mrk保存块偏移量
- primary.idx保存主键索引
5 ReplacingMergeTree
这个引擎是在 MergeTree 的基础上,添加了“处理重复数据”的功能,该引擎和MergeTree的不同之处在于它会删除具有相同主键的重复项。数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理。因此,ReplacingMergeTree 适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。
ENGINE [=] ReplacingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [ver])
可以看出他比MergeTree只多了一个ver,这个ver指代版本列,他和时间一起配置,区分哪条数据是最新的。
create table rmt_table (date Date, id UInt8, name String,point UInt8) ENGINE= ReplacingMergeTree(date, (id, name), 8192,point);
插入一些数据:
insert into rmt_table values ('2019-07-10', 1, 'a', 20);
insert into rmt_table values ('2019-07-10', 1, 'a', 30);
insert into rmt_table values ('2019-07-11', 1, 'a', 20);
insert into rmt_table values ('2019-07-11', 1, 'a', 30);
insert into rmt_table values ('2019-07-11', 1, 'a', 10);
等待一段时间或optimize table rmt_table手动触发merge,后查询
:) select * from rmt_table;
┌───────date─┬─id─┬─name─┬─point─┐
│ 2019-07-11 │ 1 │ a │ 30 │
└────────────┴────┴──────┴───────┘
6 SummingMergeTree
该引擎继承自 MergeTree。区别在于,当合并 SummingMergeTree 表的数据片段时,ClickHouse 会把所有具有相同主键的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值。如果主键的组合方式使得单个键值对应于大量的行,则可以显著的减少存储空间并加快数据查询的速度,对于不可加的列,会取一个最先出现的值。
语法:
ENGINE [=] SummingMergeTree(date-column [, sampling_expression], (primary, key), index_granularity, [columns])
columns — 包含将要被汇总的列的列名的元组
create table smt_table (date Date, name String, a UInt16, b UInt16) ENGINE=SummingMergeTree(date, (date, name), 8192, (a))
插入数据:
insert into smt_table (date, name, a, b) values ('2019-07-10', 'a', 1, 2);
insert into smt_table (date, name, a, b) values ('2019-07-10', 'b', 2, 1);
insert into smt_table (date, name, a, b) values ('2019-07-11', 'a', 3, 1);
insert into smt_table (date, name, a, b) values ('2019-07-12', 'c', 1, 3);
等待一段时间或optimize table smt_table手动触发merge,后查询
:) select * from smt_table
┌───────date─┬─name─┬─a─┬─b─┐
│ 2019-07-10 │ a │ 1 │ 2 │
│ 2019-07-10 │ b │ 2 │ 1 │
│ 2019-07-11 │ a │ 3 │ 1 │
│ 2019-07-11 │ b │ 6 │ 8 │
│ 2019-07-12 │ c │ 1 │ 3 │
└────────────┴──────┴───┴───┘
发现2019-07-11,b的a列合并相加了,b列取了8(因为b列为8的数据最先插入)。
7 Distributed
分布式引擎,本身不存储数据, 但可以在多个服务器上进行分布式查询。 读是自动并行的。读取时,远程服务器表的索引(如果有的话)会被使用。
Distributed(cluster_name, database, table [, sharding_key])
参数解析:
cluster_name - 服务器配置文件中的集群名,在/etc/metrika.xml中配置的
database – 数据库名
table – 表名
sharding_key – 数据分片键
案例演示:
1)在hadoop102,hadoop103,hadoop104上分别创建一个表t
:)create table t(id UInt16, name String) ENGINE=TinyLog;
2)在三台机器的t表中插入一些数据
:)insert into t(id, name) values (1, 'zhangsan');
:)insert into t(id, name) values (2, 'lisi');
3)在hadoop102上创建分布式表
:)create table dis_table(id UInt16, name String) ENGINE=Distributed(perftest_3shards_1replicas, default, t, id);
4)往dis_table中插入数据
:) insert into dis_table select * from t
5)查看数据量
:) select count() from dis_table
FROM dis_table
│ 8 │
└─────────┘
:) select count() from t
SELECt count()
FROM t
│ 3 │
本文地址:http://nhjcxspj.xhstdz.com/quote/383.html 物流园资讯网 http://nhjcxspj.xhstdz.com/ , 查看更多